On globally sparse Ramsey graphs

نویسندگان

  • Torsten Mütze
  • Ueli Peter
چکیده

We say that a graph G has the Ramsey property w.r.t. some graph F and some integer r ≥ 2, or G is (F, r)-Ramsey for short, if any r-coloring of the edges of G contains a monochromatic copy of F . Rödl and Ruciński asked how globally sparse (F, r)-Ramsey graphs G can possibly be, where the density of G is measured by the subgraph H ⊆ G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs F . In this work we determine the Ramsey density up to some small error terms for several cases when F is a complete bipartite graph, a cycle or a path, and r ≥ 2 colors are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ramsey Numbers of Sparse Graphs

The Ramsey number, r(G), of a graph G is the minimum integer N such that, in every 2-colouring of the edges of the complete graph KN on N vertices, there is a monochromatic copy of G. In 1975, Burr and Erdős posed a problem on Ramsey numbers of d-degenerate graphs, i.e., graphs in which every subgraph has a vertex of degree at most d. They conjectured that for every d there exists a constant c(...

متن کامل

On the Ramsey Number of Sparse 3-Graphs

We consider a hypergraph generalization of a conjecture of Burr and Erdős concerning the Ramsey number of graphs with bounded degree. It was shown by Chvátal, Rödl, Trotter, and Szemerédi [The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), no. 3, 239–243] that the Ramsey number R(G) of a graph G of bounded maximum degree is linear in |V (G)|. We derive...

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

Ramsey goodness and beyond

In a seminal paper from 1983, Burr and Erd1⁄2os started the systematic study of Ramsey numbers of cliques vs. large sparse graphs, raising a number of problems. In this paper we develop a new approach to such Ramsey problems using a mix of the Szemerédi regularity lemma, embedding of sparse graphs, Turán type stability, and other structural results. We give exact Ramsey numbers for various clas...

متن کامل

Planar Ramsey numbers for cycles

For two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H . By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2013